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APPLICATIONS OF SEMI-REGENERATIVE THEORY TO COMPUTATIONS
OF STATIONARY DISTRIBUTIONS OF MARKOV CHAINS*

by

W. K. Grassmann and Michael I. Taksar

1. Introduction

)Arguments from Regenerative Theory have been used by a number of

authors to solve equilibrium equations in queueing problems. In parti-

cular, these arguments are prominent in the matrix-geometri) solution

pioneered by Neuts [1981], but they are also used by Kleiprock 11975] in

order to analyze the GI/G/m queue and by Grassmann and Chaudhry [19821.

Since there is a number of applications for these methods, it seems

appropriate to investigate them in further detail.

-.- In this paper we use Semi-Regenerative Theory, which is a general-

ization and sophistication of Regenerative Theory. We believe that this

is the first paper which uses Semi-Regenerative Theory for developing

numerical (nonsimulation) algorithms to find the steady-state distriba-

tion of a Markov chain. The algorithm obtained is a modification of the

Gauss-Jordan method, in which all the elements used in computations are

always nonnegative, which makes the algorithm numerically stable.

To apply the theory in question to a given Markov chain (Yn,n=

0,1,...) we must represent the latter as a semi-regenerative process.

To this end we consider a subset D of the state space of Yn and we

*This research was supported by the Office of Naval Research Grant ONR-
Nooolh-79-C-0685 at the Center for Research on Organizational Effi-
ciency, and National Science Foundation Grants ECS 8204540 and ECS
8017867, at the Institute for Mathematical Studies in the Social Sci-
ences at Stanford University.
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record successive visits of the chain Yn to this subset. Let Tn,

n = 1,2,..., be the time of n-th visit to D and Xn be the position

of the chain at Tn. Then the process (X nT n ) is a Markov Renewal

process (see Qinlar [19751 Chapter 10) and Yn is a semi-regenerative

process with Tn being the semi-regenerative epochs and (XnT n ) being

the imbedded Markov Renewal process.

The latter means that if we consider the "cycles"

An = [Y T n-'YTn-+1''''..YTn - 1

then the conditional distribution of the sequence (An,An+l,...) given

the past of the process up to Tn 1 , depends only on Xn-., and all

An are conditionally independent given (X-,T-).

The analysis of the behavior of Y. from one semi-regenerative

epoch to another produces the main relation between the steady-state

probabilites that is used for developing the algorithm.

2. Proof of the Main Result

We consider an irreducible aperiodic positive recurrent Markov

chain Yn with a state space E = t0,i,2,...}. It is known (see

rinlar 119751, Chapter 8) that such a chain reaches a steady state,

i.e.,

P'AY n :J + pi J = 0,i,...

or in a shorter version

Y *Y
n
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where Y is an integer-valued random variable with distribution

(POPl,'"). Here Pi{ - Pt. 0 = i}. The notation Ei must be

understood in a similar way. Let

D = (0,1,2,..., d - i

and

(2.1) T = min m > 0: Y E DIm

Put

(2.2) v (d) T-1 m<T and Y i
ki k{( liYm k <M=0

Theorem: Let (P0 ... ,Pn) be the steady-state distribution of

the Markov chain Yn" Then

d - ( d )
(2.3) pi FlVki pk

k=0

Proof: Consider the process Zt = Y[tj, where [t] is the

integer part of t. Let

T= T

T n+ m m min {m > Tn Ym G D)

(2.h) X = YT -= ZTn T Tn n *. • • ,,' W.

• 4 ,-
, +

@
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Then for each n > 1 we have

(a) Tn is a stopping time for Z.

(b) Xn  is determined by {Zu; u 1 Tn)

(c) for each function f defined on Em and each

t I  t 2 < ... < t m

E i f(Z T n+t '  ' z ZT n+ t m) 1 I u ; u Q T n I

=Ej{f(Z ..'Z )} on the set X = j }

j. t t mn

Really, (a) follows from the definition of Tn, (b) is a consequence of

(2.4) and (c) is due to the strong Markov property of Yn.

In particular Xn is a Markov chain in the state space

D = 10,1,..., d - 11. This chain is irreducible because the original

chain Yn is irreducible. Let v., i = 1,2,..., d - 1 be the (unique)

invariant distribution for Yn" Let

m(i) = EliT}

and

K t(Ji) = P {Zt = i, T > t} H P.i YIt] = i; Yk D, for k < TI

According to Cinlar [19751, Chapter 10, Theorem (6.12)

(2.5) lim PI[Zt = j} = ( ) m() ) - 1 E k JKt(kj)dt
tLC £D IED 0

We must mention that (2.5) was proved in 'inlar [19751 under the

assumption that (X,T) is a positive recurrent, irreducible and

k
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aperiodic Markov renewal process. In our case, (X,T) is irreducible

and positive recurrent due to similar properties of Yn' but (X,T) is

not aperiodic. The random variables Tn are always integer valued.

Since Yn is aperiodic (as a discrete Markov chain) then (X,T) is

periodic with period one. However, the proof of (2.5) in inlar [19751

goes through without change for the process Z such that Zt = ZIt

and such that the period of the imbedded Markov Renewal process is 1.

The function Kt(k,j) is piecewise constant, namely

K .,) = K It](,) hence (using Fubini's theorem below)

(2.6) JKt(k,j)dt = Z Km(k,j)
0 m=O

= Z Pk{Zm J, T > m = I__0Pk{Ym= j T > m}

cT-1
7~~(~ 1= { lC d)m= Ekj (Ym)l T>m =  km=01 m 1 = vk dkj

On the other hand

(2.7) lim P i{Z j = lim P {Zi t j  = lim P.{Ym = . = p.
tWi t tWi It]

Combining (2.5), (2.6) and (2.7), we have

l( j-1 Z C d)(2.8) pi = k k v£m( -i
ED lDkkj

Let us apply (2.8) for J E D. It is easy to see that if

k,j E D then,
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(d) [0 if k j

Vkj 1i if k = J

Therefore, for j E D formula (2.8) becomes

V.
(2.9) -

Now, substituting (2.9) into (2.8), we get (2.3).

The next proposition describes the relations between V(d) for

different k,j and d. Its significance will become clear later when

we develop a numerical algorithm.

Proposition: Let v ( d ) be given by (2.2), and let Pij be thekj

transition probabilities of the Markov chain Yn" Then

)d) (1+1) (d+i) (d)

(2.11) v(d) = + L H) k t d

Vkd =kd d jd dP

(2.12) +d v() + .lv(d) ( )vkj = kj L mv~ km V m j d

Proof:

1) Let D consist of the first d points from 0 to d - 1

and let T be defined by (2.1). Let I be the first hitting time of

the point d. Then we can write
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T-1

(2.13) v = (d) -I (Y
n=O j n

TAT-i T-1
= Ek{ lj(Yn)} + Ek{ I l(Yn)

n-0 n=TAT

The first term in the right-hand side of (2.13) is obviously equal to

(d+j . Next, we must notice that if T > T then the second expres-

sion in the right-hand side of (2.13) equals zero. On the set T < T

we can use the strong Markov property to obtain

(2.14) EkI Z Ij{YnI} = (k{d) T < T} = (d) P ( < TI
n--TATd

Substituting (2.14) into (2.13), we get

(2.15) v (d) = v (d+l) + vCd) Pk{T < T)

Now, iterate (2.15), namely, put k = d in (2.15) and substitute the

value of v (d) in the right-hand side of (2.15). We get
dj

(2.16) v (d) V(d+l) + p {T < T)Iv(d+l) + v(d) d{T < T)
k j k dj dj d

Iterating (2.15) n times, we get

(2.17) v(d) (d+l) + Pk(T < T)n (d+l)( d{T < T}m(.)Vkj =Vkj _ d d

+ (Pd {T < T) )d I

If P {T < T) = 1 then, using the strong Markov property, we get that
d

P d{T < = O, which contradicts the assumption that Yn is

d=



irreducible. Therefore, P d{T < TI < 1 and we can pass to the limit in

(2.17) as n + -.

.(d) = (d+l) +(d+1) * p {m

(2.18) kj kj + dj I-0 k" < TI(Pd T < T)

Using the strong Markov property once more, we see that if k * d, then

do 00 T- 1
(2.19) m Pk T < T}[Pd(T < T})m = mpk I i d (Yt ) > m}

T-1 (d)
E k 1 1ld(Y X Vkd

Combining (2.18) and (2.19), we get (2.10).

2) To prove (2.11), write (below we use the fact that T = 1 on

the set Y1 E D)

(d)
(2.20) Vkd = Ekmlld(Ym)iT>m' = Eklid(Y1 ) lT>l1

m1m

+ EklIE\D (Y 1)Ek 1d(Ym)IT>mIYI

If Y1 = d then obviously T > 1; therefore, the first term in

the right-hand side of (2.20) equals

Ek{1d(Yl)2T>l} = Ek(id(Yl) = Pkd

Due to the Markov property, the conditional expectation in the

second term in the right-hand side of (2.20) equals
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4V (d )
Ey l d(Y )T> } =V Y d

and hence (2.20) becomes

(d) +E{v(d) )1

V kd Pkd +Ek vY d 1E\D (Y1

= kd +I Y d

j) d

3) Formula (2.12) generalize .0), its proof and the ideas

behind the proof are similar to those of (2.10), but require more compu-

tations, and we omit them here.

3. An Algorthm to Find Equilibrium Probabilities

In this section, we present an algorithm to find the equilibrium

probabilities pi, which will then be interpreted in terms of the

v ) i .This interpretation is interesting for its own sake, but it can

also be exploited in a number of ways as will be shown.

The equilibrium probabilities pi are given by the steady state

equations, that is

N N
0 P 3 - p( Pi(pi - 6ij) , j = 0,1 .... N

i=1 i=i

Here 6 is 1 if i = J and zero otherwise. To find the Pi, we

proceed as follows. We solve the Nth equation for pN, and eliminate

PN from all other equations. Then, we solve equation N - 1 for pN-Ig

and eliminate pN-I from all other equations, except from equation

. .. . - . .. ..... -
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N. We continue this way until we solve the first equation for pl. In

other words, we always use the diagonal element as pivot, and we apply

Gaussian elemination, starting with equation •N and ending with equa-

tion 1. If an are the values obtained before solving for Pn' one
ij

has

N
a =pij -6ij

and

n
n1 a in

(3.1) an- - , 0 i < n
in an

nn

n-I n n n-I

(3.2) a.l a.. + a . . , 0 i < n , 0 J < n13 13 nj in

n-l n
(3.3) a.. = a.13 13

nThis method can only be applied if all a > 0. This is where the
nn

theory presented earlier is helpful. Clearly, the elimination procedure

gives

p = p.a n  , J > n
i1=0

It is also clear that the an are uniquely determined by the Pik,
iJ

k > J. On the other hand, we have equation (2.3), which implies

J-1 Q)
p : PiVij

i=O
t
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Here, the v(n) are similarly determined uniquely by Pik, k ;'J

Hence

(3.4) a n = V(i) ,j>n
i~j ij

This implies that 0 4 a n < -, j > n. This, together with (3.1) im-
ni

plies that an cannot be equal zero. We can even say more. Indeed,
nn

one has

(3.5) a n an
nn J= nj

To prove (3.5), we show by complete induction that

n
(3.6) 1 an,. 0

Clearly, this equation holds for n = N. We now prove (3.6) f'or n -1

Because of (3.3), we only need to consider the case where j < n.

Equations (3.1) and (3.2) then give

n-l n-I. a nan
I a -1 (a n n~j in)

nn

nn

n-.nn-l a n

a=O - i J= an

This proves (3.6), and with it (3.5).
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At this point, it should become apparent that the elimination

suggest,.. by (3.1) to (3.3) can be done without ever using subtractions

or negative numbers. We merely need to replace an  in (3.1) by (3.5),
nn

giving

n

(3.7) a n- i a in 0 i < n
in n-i

- n

and omit (3.2) for the case that i = J. Equations (3.2) and (3.7)

involve then only aij with i * j, and these will always remain posi-

tive, given they were positive to start with.

Because of (3.4), the elimination described by (3.2) and (3.7)

gives for n = 0

(3.8) 0 = v(j )t Pai 0p i ij "j = 2pa =12..

From (2.12), we find

(3.9) V ) + J: z

v' k- Ok kj

Relation (3.9) allows one to find v (I) recursively, once V is
0j oj

given. Once all VoI  are found, PO becomes

1

PO N
0 + I

Oi)pj = o~oj , *J> 0
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With this, all pj are found, and we can now count how many operations

are needed to find all pj, J = 0,1,....N.

We note that for each n, lanj has to be calculated, which gives

n operations, equation (3.7) must be applied n times, requiring

another n operations, and equation (3.2) is applied n2  times, giving

another 2n2  operations. Since n varies from 1 to N, this gives

(see also E. Isaacson, H. B. Keller [19661)

NN 2N(N + )(N + 2)
1 2(n + n) = 2 1 n(n + 1) 3 2

n=l n=l

operations. The number of operations is thus of order 2N3 /3.

Frequently, there exist g,h such that Pij = 0 for

j < i - g and j > i + h. The an inherit this property as can

be seen by complete induction. To find the demoninator of (3.7) then

requires only min(n,g) additions. Once the denominator is found,

(3.7) needs only be applied min(n,h) times, which gives a total of

min(n,h) multiplications. (3.2) similarly requires a total of 2

min(n,h) - min(n,g) operations. Since n runs from 1 to N, this

gives order 2Nhg operations, which is considerably less than 2N3 /3

equations as long as h or g is small compared to N. The number of

operations to do (3.9) and (3.10) is always relatively insignificant.
(d)

Sometimes, the vkd), j * 1 and j * d are needed as well. They
UC)

are easily found recursively from the kj , using equation (2.12).

Moreover, by substituting (d) in (2.3) from (2.11), we find theVki

following interesting equation

".



(31)=d-l + (d)( )j (PJ +  pV ) j = 0,1,..., d - 1

k=0 JOd

Thus, once the (d) are found, we have j equations, and (j - 1)Thusoncethe kj

independent equations, which allow one to find pj, j = 0,1,..., d - 1,

except for a factor. Applications of (3.11) will be given in the next

section.

4. Applications

To illustrate the method, we now consider a number of special

cases and discuss some numerical results. Some of the examples dis-

cussed deal with continuous-time Markov processes. This is no major

problem because all the methods carry over to continuous-time Markov

processes, provided piJ i * j is replaced by the rate aij. Also,

the v (d)
ij can be interpreted similarly. The diagonal elements, that

is, the Pii - 1, respectively, the aii, are irrelevant. We can set

these elements equal to 0.

In most cases considered here, Pij (respectively aij) are zero

for j > i + h and j < i - g. In this case, one finds from (3.2),

(3.4) and (3.7)

0 i<n-h

(4.1) v( n )

in n
0 ,n-h i< n

n-l
I a n

J)0,n-g
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n + an v (n) 0, n - h 4 i < naii nj in 0, n - g 4 j < n, J i
n-ni(J ,J=

(4.2) ani

Sni otherwise

It can now immediately be seen that in the case of a birth-death

process, where ai,i+i = Ai and ai,i-i Pii' aij = 0, J > i + 1 or

j < i - 1, (4.2) will not be used at all, and (4.1) becomes

V(n) =n-I
n-l,n tn

Relation (3.8) then leads to the well-known relationship

j -1
Pj = PJ.l-

This result gives a nice check for our derivations. We also note that

our method does not pick the (less efficient) simple recursive solution

of the steady state equations.

Next, consider the %/M/l queue, with the additional restriction

that the number of "phases" in the system is restricted to N. In this

case, aij = for j = i - 2, i = 2,3,...,N and a =2X for
ij

J = i + 1, i = 0,1,..., N - 1. All other aij, i * j are zero.

Since h = 1, (4.1) is only applied for i = n - 1, that is

(4.3) v (n) 2A
n-l,n a n

n ,n-l

Equation (4.2) is similarly applied only for i = n - 1, j = n -2,

which gives
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(4.4) n-i = n +n (n) (n)an-l,n-2 anl2 an ,n-2vn-l,n = Ijvn-l,n

Equations (4.3) and (4.4) can be combined to give

2X

(n) 2X
n-l,n 1v(n+l) v(n+l)

n,n+l n,n+l

Moreover, it is easily verified that v(N) = 2A/j. This means that

Ni-lN
v(n) is really the beginning of a continued fraction
n-i ,n

2A
v(N-i) =_ _

N.-2,N-1 2 A =

2X
v(N-2) _

N-3,N-2 2A

+ +-

and so on. In Table 1, the v(n) are listed for N = 10,
n-l,n

= 1 and A = 0.5 and 1. It is clearly seen that the V(n)

converge rather quickly. Then, due to (3.8),

_ (n)

Pn n-lnPn-i"

Of course, our algorithm can solve much more complex problems than

the ones presented above. To show this, we calculated the stationary

probabilities for a number of cases. These results are given in Table

2.
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Table 1: The v (n) for the E2/M/1 queue

n-l,n

n v(n) v(n)
n-l,n n-1,n

9 1 2

8 0.5 o.6667

7 o.6667 1.2

6 o.6 0.9090

5 o.625 1.01476

14 0.6154 0.9767

3 0.6190 1.0118

2 0.6176 0.9941

1 0.6182 1.0029

Table 2: Computational results

Execution Average Largest Largest Rel.
N hi g Time* Difference Difference Difference

100 10 10 1.6 2E -10 5 E -10 7 E- 8

1000 10 10 15 5 E-11 2 E -10 2 E- 7

100 20 10 2.7 4 E- 10 5E -9 7 E -8

100 10 20 2.7 2 E -10 2E -9 7 E- 8

'DEC 2050 Basic, SCORE-System, Stanford University
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In each case, the aij where generated randomly, using a uniform distri-

bution between zero and 1. To find out how accurate the results are, we

solved each problem twice, except that in the second run, state 0

became state N, state 1 became state N - 1 and so on. Absolute and

relative deviations between these two methods are also given in Table

2. The execution time is the time per run in cpu seconds.

Applications are not limited to numerical investigations as the

following examples indicate.

Kleinrock [19751 investigated the imbedded Markov process of the

GI/M/m queue as follows. He defined ad-1 to be the expected number

of visits of state d between two visits of state d - 1. In the

process in question, it is impossible to visit state d from the states

d - 2, d - 3,..., which implies that ad is also equal to the number of

visits to state d during a stay among the states d, d + 1, d + 2 ....

In symbols, h = 1, and consequently

(d)
d d-l,d

Kleinrock proves now that

Pd = ad-1 * Pd-i

a fact that immediately follows from (4.1) with h = 1. Kleinrock

argues further that ad_1 is independent of d as soon as

Pij= PJ+k,j' h > 0 is independent of J. This also follows easily

from our derivation, because v(d) is determined by the
d-l,d

PJ+k,J' j > d. More complex systems than Kleinrock's can be analyzed in
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a similar way. In particular, our methods can give new insights into

the matrix-geometric solution of Neuts [19811 as the reader my verify.

Next, we present two applications of the equation (3.11). The

first application concerns a system with a huge number of states, where

the probabililty mass is concentrated in a few states only, say in the

states 0,1,2,..., d - 1. Such systems are encountered frequently in

connection with queueing networks at a low traffic intensity. In such

systems, we can obtain the V(d) by simulation, and caluclate the pj,
kj

J < d from (3.11), and the pi, J - d from (2.3).

The second application of (3.11) concerns a group of Markov pro-

cesses, in which the Pijp J ) d are identical, but the PiJp J < d are

not. Since the v(d) depend only on Pij, J > d, this means that the
ij

id) are identical for all these problems, and need not be recalculated.
Vi'

For this case, (3.11) provides a convenient way to solve such problems.

This is of importance in the case of sensitivity analysis.

5. Conclusions

It has been shown (Grassmann [19831) that algorithms, dealing with

non-negative elements only, and containing no subtractions, are extreme-

ly resistant to rounding errors. In this paper, we derived such an

algorithm. The algorithm combines elements from regenerative theory

with algebraic methods. The algorithm is still effective for problems

with a size of N = 1000, a range where normal Gaussian elimination

tends to fail because of the accumulation of rounding errors. The

algorithm also lends itself to exploit band-structures which are preva-

lent in many queueing problems.
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Because of the interpretation of some key elements of the algo-

rithm, using regenerative theory, the algorithm can also make theoreti-

cal contributions. In particular, it makes an argument of Kleinrock

more transparent. We also mentioned that it can be used in connection

with the matrix-geometric solutions of Neuts. Finally, the regenerative

underpinnings of our algorithm allow one to combine analytical and

simulation methods.
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